2015 Australian Intermediate Mathematics Olympiad - Questions

Time allowed: 4 hours.
NO calculators are to be used.
Questions 1 to 8 only require their numerical answers all of which are non-negative integers less than 1000 .
Questions 9 and 10 require written solutions which may include proofs.
The bonus marks for the Investigation in Question 10 may be used to determine prize winners.

1. A number written in base a is 123_{a}. The same number written in base b is 146_{b}. What is the minimum value of $a+b$?
[2 marks]
2. A circle is inscribed in a hexagon $A B C D E F$ so that each side of the hexagon is tangent to the circle. Find the perimeter of the hexagon if $A B=6, C D=7$, and $E F=8$.
[2 marks]
3. A selection of 3 whatsits, 7 doovers and 1 thingy cost a total of $\$ 329$. A selection of 4 whatsits, 10 doovers and 1 thingy cost a total of $\$ 441$. What is the total cost, in dollars, of 1 whatsit, 1 doover and 1 thingy?
[3 marks]
4. A fraction, expressed in its lowest terms $\frac{a}{b}$, can also be written in the form $\frac{2}{n}+\frac{1}{n^{2}}$, where n is a positive integer. If $a+b=1024$, what is the value of a ?
[3 marks]
5. Determine the smallest positive integer y for which there is a positive integer x satisfying the equation $2^{13}+2^{10}+2^{x}=y^{2}$.
[3 marks]
6. The large circle has radius $30 / \sqrt{\pi}$. Two circles with diameter $30 / \sqrt{\pi}$ lie inside the large circle. Two more circles lie inside the large circle so that the five circles touch each other as shown. Find the shaded area.

7. Consider a shortest path along the edges of a 7×7 square grid from its bottom-left vertex to its top-right vertex. How many such paths have no edge above the grid diagonal that joins these vertices?
[4 marks]
8. Determine the number of non-negative integers x that satisfy the equation

$$
\left\lfloor\frac{x}{44}\right\rfloor=\left\lfloor\frac{x}{45}\right\rfloor
$$

(Note: if r is any real number, then $\lfloor r\rfloor$ denotes the largest integer less than or equal to r.)
[4 marks]
9. A sequence is formed by the following rules: $s_{1}=a, s_{2}=b$ and $s_{n+2}=s_{n+1}+(-1)^{n} s_{n}$ for all $n \geq 1$. If $a=3$ and b is an integer less than 1000, what is the largest value of b for which 2015 is a member of the sequence? Justify your answer.
10. X is a point inside an equilateral triangle $A B C . Y$ is the foot of the perpendicular from X to $A C, Z$ is the foot of the perpendicular from X to $A B$, and W is the foot of the perpendicular from X to $B C$.
The ratio of the distances of X from the three sides of the triangle is $1: 2: 4$ as shown in the diagram.

If the area of $A Z X Y$ is $13 \mathrm{~cm}^{2}$, find the area of $A B C$. Justify your answer.

Investigation

If $X Y: X Z: X W=a: b: c$, find the ratio of the areas of $A Z X Y$ and $A B C$.
[2 bonus marks]

